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Some inequalities that constrain the reconstruction of k-electron distribution func-
tions from lower-order distribution functions are presented. These inequalities are
related to the N -representability conditions on electron distributions functions and they
have two basic types: (1) general N -representability inequalities, which are very pow-
erful but difficult to apply and (2) generalized “Davidson” inequalities, which are less
powerful but which may be more facile in computational implementations. A constraint
on the exchange-correlation hole is also presented.

1. Motivation

In a landmark 1994 paper, Ziesche extended the argument of Hohenberg
and Kohn to show that the electron pair distribution function, or two-density,
determined all the properties of an electronic system [1]. This opened up the field
of pair density functional theory and, more generally, electronic structure theo-
ries based on the k-electron distribution functions, or k-densities [1–22].

There are several reasons why k-density functional theory is an attractive
approach to the electronic structure problem. First of all, k-density functional
theories are arguably the most natural version of “higher order” density-func-
tional theory. The k=1 case is just normal density functional theory. For k �
2, the electron–electron repulsion energy can be computed exactly and only
the kinetic energy functional has to be approximated [6–10]. As k increases, it
becomes easier to construct accurate kinetic energy functionals until, eventually,
when k is equal to the number of the electrons in the system, the exact kinetic
energy functional is known in an explicit form [9]. Unfortunately, as the number
of electrons increases, another problem—the N-representability problem for the
k-electron distribution functions—becomes more difficult to solve [20–22].

In classical statistical mechanics one often uses hierarchies of equations to
determine classical many-particle distribution functions [23]. There are analogous
results in quantum mechanics. The most common approaches are the contracted
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Schrödinger equations and its variants [24–26]. The contracted Schrödinger
equations are hierarchies of equations for the reduced density matrices of a sys-
tem; they provide a partial solution to the N-representability problem for the
reduced density matrices because the “mathematics” of N-representability con-
ditions is partially enforced by the “physics” that is embodied in the hierarchy
and the reconstruction techniques.

An analogous hierarchy of equations for the k-densities can be obtain by
simply generalizing the arguments of Lee, Jackson, and Feenberg [27]. The first
two elements of the hierarchy are [9].
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and the higher terms in the hierarchy are similar. Here

ρ
σ1σ2...σk

k (x1, x2, . . . , xk)

=
〈
Ψ

∣∣∣∣∣
N∑

ik �=i1,i2,...,ik−1

· · ·
N∑

i2 �=i1

N∑
i1=1

{
k∏

j=1

∣∣σj

(
ij
)〉

δ
(
r ij − xj

) 〈
σj

(
ij
)∣∣
}∣∣∣∣∣Ψ

〉
(3)

is the (spin-resolved) k-electron distribution function, which is conventionally
normalized to Nα !Nβ !

mα !mβ ! where Nα and Nβ denote the number of α-spin electrons
and β-spin electrons in the electronic system and mα and mβ denote the number
of α-spin and β-spin indices in σ1σ2 . . . σk. If one knows an explicit equation
for the higher-order electron distribution functions in terms of the lower-order
electron distribution functions, then one can evaluate the functional derivative
of k-density with respect to the (k-1)-density. If the hierarchy equation is sat-
isfied, then there exists some Hamiltonian for which some eigenstate has the
k-density in question. This, however, does not ensure that the k-density in
question corresponds to a “fermionic” (i.e. antisymmetric) eigenstate of that
Hamiltonian; nor does it guarantee that the Hamiltonian associated with this k-
density corresponds to an electronic system. (In general, the Hamiltonian will
have many-body potential interaction terms).
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2. N-representability conditions for hierarchies of k-densities

There is another family of conditions that can be used to inform the
reconstruction of k-densities for lower-order electron distribution functions.
A k-density is N-representable if and only if there exists an ensemble of ferm-
ionic wave functions such that

ρ
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k (x1, x2, . . . , xk)

=
∑
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Here pn represents the probability of the state Ψn occurring in the ensem-
ble; thus

0 � pn � 1,
∞∑

n=1
pn = 1.

(5)

It is a somewhat subtle, but important, fact that the N-representability con-
ditions for bosons and fermions are essentially the same; every fermionic k-den-
sity is also a permissible bosonic k-density [20]. The only meaningful restriction
that is specific to fermions is that the probability of observing two fermions with
the same spin at the same point in space is always zero. Moreover, for sufficiently
smooth density matrices, the antisymmetry of the wavefunctions in the ensem-
ble imposes a constraint on the vanishing of derivatives at the same-spin electron
coalescence point: [9].

(
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)

ε=0
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)

ε=0
> 0

(6)

This must be true for every direction vector d except perhaps the vectors in
a nodal plane that intersects the origin.

At this stage, the N-representability problem for the k-electron distribu-
tion function can be considered solved. Samvelyan was the first to derive neces-
sary and sufficient conditions and he studied the most difficult case: pure-state
N-representability (where only one of the pn in equation (4) is nonzero) [14].
Unfortunately, his solution was not practical at all. Pistol considered electrons
on a lattice and showed that the ensemble-N-representable distribution functions
were all linear combinations of classical distribution functions on the lattice [12].
The author then formulated the N-representability conditions in a somewhat
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simpler form and generalized to higher-order electron distributions in real space
[20]. The necessary and sufficient conditions for N-representability are: [20]

The k-electron spin densities ρ
σ1...σk

k (r1, . . . , rN)are N-representable if and
only if for every choice of k-body spin-potentials, wσ1...σk (r1, . . . , rk), the potential
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k (r1, . . . , rk) dr1 . . . drk

]
(7)
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For example, the spin-resolved two-density is N-representable if and only if
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for every possible choice of the spin-potentials.
Equation (9) can be restated in the form of a constraint on the two- and

three-electron distribution functions. The new choice for the spin-potentials,
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(10)

has the merit of being nonnegative for any N-electron system with Nα α-spin
electrons. Evaluating the expectation value of this potential for an appropriate
wavefunction but not integrating over the coordinate of the last electron, gives a
constraint,

0 �
〈
Ψ

∣∣∣∣∣∣∣∣

N∑
i=1

∑
j �=i

⎛
⎜⎜⎝

|α (i) α (j)〉Wαα
(
r i , rj

) 〈α (j) α (i)|
+ |α (i) β (j)〉Wαβ

(
r i , rj

) 〈β (j) α (i)|
+ |β (i) α (j)〉Wβα

(
r i , rj

) 〈α (j) β (i)|
+ |β (i) β (j)〉Wββ

(
r i , rj

) 〈β (j) β (i)|

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
Ψ

〉

2...N

, (11)

which can be rewritten as a constraint on the reconstruction of the three-density
from the two-density:
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.

(12)

This reduces to an especially simple form when all the spin-potentials are
equal:
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∫∫
ρ3 (r1, r2, r3)W (r2, r3) dr2dr3 � −2

∫
ρ2 (r1, r2)W (r1, r2) dr2. (13)

In deriving this last expression, the spin-traced k-densities were defined in
the usual way,

ρk (r1, . . . , rk) =
∑

σ1,σ2,...,σk=α,β

ρ
σ1,...,σk

k (r1, . . . , rk) . (14)

The preceding conditions are very strong constraints, but they are rarely prac-
tical because constructing the spin-potentials, Wσσ ′ (

r i , rj

)
, requires solving the

classical many-body problem. This is easier than the quantum many-body prob-
lem, but not much easier. There are certain choices of potentials — nota-
bly the Lennard–Jones [28–30], Morse [31–33], Dzugutov [34, 35] Z1 [36] and
Z2 [36] potentials — where extensive tabulations of the ground-state minima
exist. These results can be used to constrain the N-representability of the spin-
free two-density. There are even a few cases (binary Lennard–Jones clusters)
[37] where the classical optimization problem for two component mixtures has
been solved; this provides access to constraints on the spin-resolved two-den-
sity. Except for this limited set of potentials, the only way to obtain meaningful
N-representability constraints is to either (a) solve the classical problem explicitly
or (b) construct additional potentials where the classical problem can be solved
analytically.

The rest of this paper will be devoted to a consideration of option (b);
in particular, consideration will be given to potentials where a lower bound to
the classical problem can be obtained analytically. The earliest conditions of this
type were those of Garrod and Percus [38] who treated the spin-independent
case. Davidson then introduced a similar constraint in conjunction with har-
monically confined electrons [39]; in collaboration with the present author, he
then generalized this constraint to include the spin-resolved 2-density and other,
higher-order, k-densities [11]. There are some other necessary conditions for N-
representability that are known (especially for the two-density); a catalogue of
these conditions can be found in refs [11, 20].

The goal of this paper is to show that the generalized Davidson constraints
can be adapted to provide N-representability constraints on hierarchies of
k-densities. For simplicity of presentation, only the absolute simplest constraints
(which couple the electron density, the two-density, and the three-density) will
be presented. The author believes these are probably the most interesting con-
straints, but the methods presented here are readily extended to higher-order
k-densities.

The generalized Davidson constraints arise as special cases of the gen-
eral N-representability constraints where one is guaranteed that the ground-state
energy of the classical structure problem is greater than or equal to zero. This is
achieved by writing a potential in the form:
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0 � VDvdsn ≡
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)
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∑
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⎜⎜⎝
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α

(
rj

) 〈α (j) α (i)|
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β

(
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α
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β

(
rj

) 〈β (j) β (i)|

⎞
⎟⎟⎠ (15)

Using the definition of the two-density to evaluate 〈Ψ |VDvdsn| Ψ〉 � 0 gives the
generalized Davidson constraint. If instead of integrating over all of the electrons
one integrates over all but one electron, then one gets a constraint on the low-
order terms in the hierarchy of electron distribution functions.

For the sake of simplicity, consider the spin-free case (fα (r) = fβ (r)) case
first. In that case:

0 � 〈Ψ |VDvdsn| Ψ〉2...N

0 � 1
N

⎛
⎝

|f (r1)|2 ρ (r1) + ∫ |f (r2)|2 ρ2 (r1, r2) dr2
+2

∫
Re [f (r1) f (r2)] ρ2 (r1, r2) dr2

+ ∫ ∫
Re [f (r2) f (r3)] ρ3 (r1, r2, r3) dr2dr3

⎞
⎠ .

(16)

Integrating this expression with respect to the remaining variable recovers the
“ordinary” spin-free generalized Davidson constraint,

0 �
∫

ρ (r1) |f (r1)|2 dr1

+
∫ ∫

Re [f (r1) f (r2)] ρ2 (r1, r2) dr1dr2. (17)

The spin-resolved result is derived in a similar way. One obtains

0 � 〈Ψ |VDvdsn| Ψ〉2...N
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0 � 1
N

⎛
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ραα

2 (r1, r2) |fα (r2)|2 dr2

+ ∫
ρ

αβ
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∣∣fβ (r2)

∣∣2 dr2
+2

∫
ραα

2 (r1, r2) Re [fα (r1) fα (r2)] dr2

+2
∫

ρ
αβ

2 (r1, r2) Re
[
fα (r1) fβ (r2)

]
dr2

+ ∫ ∫
ρααα

3 (r1, r2, r3) Re [fα (r2) fα (r3)] dr2dr3

+2
∫ ∫

ρ
ααβ

3 (r1, r2, r3) Re
[
fα (r2) fβ (r3)

]
dr2dr3

+ ∫ ∫
ρ

αββ

3 (r1, r2, r3) Re
[
fβ (r2) fβ (r3)

]
dr2dr3

+ρβ (r1)
∣∣fβ (r1)

∣∣2 + ∫
ρ

ββ

2 (r1, r2)
∣∣fβ (r2)

∣∣2 dr2

+ ∫
ρ

βα

2 (r1, r2) |fα (r2)|2 dr2

+2
∫

ρ
ββ

2 (r1, r2) Re
[
fβ (r1) fβ (r2)

]
dr2

+2
∫

ρ
βα

2 (r1, r2) Re
[
fβ (r1) fα (r2)

]
dr2

+ ∫ ∫
ρ

βββ

3 (r1, r2, r3) Re
[
fβ (r2) fβ (r3)

]
dr2dr3

+2
∫ ∫

ρ
βαβ

3 (r1, r2, r3) Re
[
fα (r2) fβ (r3)

]
dr2dr3

+ ∫ ∫
ρ

βαα

3 (r1, r2, r3) Re [fα (r2) fα (r3)] dr2dr3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Integrating this expression and using the identities

N = Nα + Nβ

ρσ (r1) = (Nσ − 1)

∫
ρσσ

2 (r1, r2) dr2

ρσ (r1) = Nσ ′
∫

ρσσ ′
2 (r1, r2) dr2

ρσσ
2 (r1, r2) = (Nσ − 2)

∫
ρσσσ

3 (r1, r2, r3) dr3

ρσσ
2 (r1, r2) = Nσ ′

∫
ρσσσ ′

3 (r1, r2, r3) dr3

ρσσ ′
2 (r1, r2) = (Nσ − 1)

∫
ρσσ ′σ

3 (r1, r2, r3) dr3

(19)

gives the spin-resolved generalized Davidson condition [11]

0 �
∫ (

ρα (r1) |fα (r1)|2 + ρβ (r1)
∣∣fβ (r1)

∣∣2) dr1dr2 (20)

+
∫∫ ⎛

⎝
ραα

2 (r1, r2) Re [fα (r1) fα (r2)]
+2ρ

αβ

2 (r1, r2) Re
[
fα (r1) fβ (r2)

]
+ρ

ββ

2 (r1, r2) Re
[
fβ (r1) fβ (r2)

]

⎞
⎠dr1dr2

The reader can also confirm that if fα (r) = fβ (r,) then equations (16) and (18)
are identical.

Davidson-type constraints like those in equations. (16)–(20) are powerful
because they must apply for every possible function, f (r). By exploiting this
flexibility, one can derive constraints with different forms. For example, in some
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applications — notably those related to density functional theory — the 2-den-
sity may not be known, but the spherically averaged two-density is known,

ρσσ ′
2 (r1, r12) = 1

4π

∫
ρσσ ′

2 (r1, r2 − r1) dω12. (21)

Integration with respect to dω12 represents integration with respect to the solid
angle of the relative electron position, r2 − r1.

A constraint on the spherically averaged pair density can be obtained by
choosing

fσ (r i ) = ω̂σ (k) eik·r i . (22)

Notice that

fσ (r i ) f ∗
σ ′

(
rj

) = ω̂σ (k) ω̂σ ′ (k) eik·(r i−rj ),

|fσ (r i )|2 = (
ω̂σ (k)

)2
. (23)

Next, insert these expressions into equation (18) and integrate with respect to k.
This produces pair potentials that depend only on the distance between the par-
ticles, namely,

wαα

(
rij

) =
∫ (

ω̂α (k)
)2

eik·(r i−rj )dk

= 4π

rij

∫ ∞

0

(
ω̂α (k)

)2 sin
(
krij

)
kdk,

wββ

(
rij

) =
∫ (

ω̂β (k)
)2

eik·(r i−rj )dk (24)

= 4π

rij

∫ ∞

0

(
ω̂β (k)

)2 sin
(
krij

)
kdk

wαβ

(
rij

) = wβα

(
rij

) =
∫

ω̂α (k) ω̂β (k) eik·(r i−rj )dk

= 4π

rij

∫ ∞

0

(
ω̂α (k) ω̂β (k)

)
sin

(
krij

)
kdk.

Just as in equation (18), one obtains a constraint on the pair density:
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0 � ρα (r1)

⎛
⎝

∞∫

0

(
ω̂α (k)

)2 4πk2dk

⎞
⎠ + ρβ (r1)

⎛
⎝

∞∫

0

(
ω̂β (k)

)2 4πk2dk

⎞
⎠

+ 1
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+2
∫

ραα
2 (r1, r2) wαα (r12) dr2

+4
∫

ρ
αβ

2 (r1, r2) wαβ (r12) dr2

+2
∫

ρ
ββ

2 (r1, r2) wββ (r12) dr2

+ ∫∫ (
ρααα

3 (r1, r2, r3) + ρ
βαα

3 (r1, r2, r3)
)

wαα (r23) dr2dr3

+2
∫∫ (

ρ
ααβ

3 (r1, r2, r3) + ρ
βαβ

3 (r1, r2, r3)
)

wαβ (r23) dr2dr3

+ ∫∫ (
ρ

αββ

3 (r1, r2, r3) + ρ
βββ

3 (r1, r2, r3)
)

wββ (r23) dr2dr3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

However, in this case, one can simplify the result to obtain a constraint on
the spherically averaged pair density,

0 � ρα (r1)

⎛
⎝

∞∫

0

(
ω̂α (k)

)2 4πk2dk

⎞
⎠ + ρβ (r1)

⎛
⎝

∞∫

0

(
ω̂β (k)

)2 4πk2dk

⎞
⎠

+ 1
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
∞∫
0

⎛
⎝

2ραα
2 (r1, r12) wαα (r12)

+4ρ
αβ

2 (r1, r12) wαβ (r12)

+2ρ
ββ

2 (r1, r12) wββ (r12)

⎞
⎠ 4πr2

12dr12

+
∞∫
0

⎛
⎜⎜⎜⎝

(
ρααα

3 (r1, r23) + ρ
βαα

3 (r1, r23)
)

wαα (r23)

+2
(
ρ

ααβ

3 (r1, r23) + ρ
βαβ

3 (r1, r23)
)

wαβ (r23)

+
(
ρ

αββ

3 (r1, r23) + ρ
βββ

3 (r1, r23)
)

wββ (r23)

⎞
⎟⎟⎟⎠ 4πr2

23dr23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(26)

The spherically averaged three-density is defined by integrating over the
center-of-charge for the last two electronic coordinates and integration over solid
angle for their relative coordinate:

ρ
σ1σ2σ3
3 (r1, r23) = 1

4π

∫∫
ρ

σ1σ2σ3
3

(
r1,

r2 + r3

2
, r3 − r2

)
dω23d

(
r2 + r3

2

)
. (27)

Equation (26) provides a constraint on the exchange-correlation hole in
density-functional theory, though the constraint is not especially useful because
it still depends on the spherically averaged three-density, which is rarely known.
However, if one integrates these expressions with respect to r1 then one obtains
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a constraint on the system-averaged, spherically averaged two-density,

−Nα

(∫ ∞

0

(
ω̂α (k)

)2 4πk2dk

)
− Nβ

(∫ ∞

0

(
ω̂β (k)

)2 4πk2dk

)

�
∫ ∞

0

(
ραα

2 (r12) wαα (r12) + 2ρ
αβ

2 (r12) wαβ (r12)

+ρ
ββ

2 (r12) wββ (r12)

)
4πr2

12dr12, (28)

where

ρσσ ′
2 (r12) = 1

4π

∫ ∫
ρσσ ′

2 (r1, r2 − r1) dω12dr1. (29)

The constraint in equation (28) is directly applicable to density functional
theory because it provides a constraint on the system-averaged spherically aver-
aged exchange-correlation hole. The constraint is rather strong since it must hold
for any pair potential that arises as the Fourier transform of a positive, spheri-
cally symmetric, function [cf. equation (24)].

Some readers will recognize that the methods used here are very simi-
lar to the methods used to derive the contracted Schrödinger equation, where
one evaluates 〈Ψ|Ĥ |Ψ〉3...N . N-representability constraints can be imposed on the
solutions to the contracted Schrödinger equation in a way that is very simi-
lar to the approach advocated here: just require that the reduced density matri-
ces satisfy the constraints embodied by 〈Ψ|P̂ |Ψ〉3...N � 0, 〈Ψ|Q̂|Ψ〉3...N � 0,
〈Ψ|Ĝ|Ψ〉3...N � 0, 〈Ψ|T̂1|Ψ〉3...N�0, 〈Ψ|T̂2|Ψ〉3...N�0, ... where P̂ , Q̂, Ĝ, T̂1, T̂2, etc.
are the positive-definite two-body Hamiltonians that are commonly employed as
N-representability constraints [22, 38, 40–42]

3. Summary

The key results in this paper are the constraints on the reconstruction of
the three-density from the two-density, equations (12), (18), and (26). Such con-
straints are important for two reasons: (1) This constrains the sorts of expressions
for the three-density that can be used in the generalized Lee–Jackson–Feenberg
hierarchy of equations. (2) This constraints the sorts of expressions that can be
used if the three-density, instead of the two-density, is used to approximate the
kinetic energy in two-density functional theory.

This last point merits further comment. It is known that there is a series
of “generalized Weizsacker” functionals for the k-density which provide increas-
ingly tight lower bounds to the kinetic energy as k increases. There is also a fam-
ily of “density-matrix based” kinetic-energy functionals and a family of “Kohn–
Sham correction functionals” for the k-density; these also converge to the correct
energy as k increases. If exact N-representability conditions are enforced, the only
approximation in two-density functional theory is the kinetic energy functional.
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Since the error in the kinetic energy functional will control the error in the calcu-
lation and these approaches for constructing kinetic energy functionals are more
accurate for the three-density than they are for the two-density, it seems pru-
dent to use the two-density to approximate the three-density, and then evaluate
the kinetic energy using the approximate three-density. The conditions derived in
this paper provide essential guidance on how to obtain a “reasonable” three-den-
sity starting only from the two-density. These hierarchical N-representability con-
ditions derived in this paper join (i) “sequential relations” (which indicate that
the three-density should integrate to the two-density, as in equation (19)), (ii)
the generalized Lee–Jackson–Feenberg hierarchy [equation (2)], (iii) the electron
coalescence conditions [equation (6)] and (iii) the fact three-density should be
N-representable. This is all that is known about the form of the three-den-
sity. The hierarchical N-representability conditions derived here are expected to
be rather stringent compared to some of the other conditions (they imply, for
example, the sequential relations and enforce the simpler N-representability con-
straints on the three-density) and they are relatively easy to enforce. This sug-
gests that the conditions derived here may be important.

A incidental result of this analysis was equation (26), which constrains the
system-averaged spherically averaged pair density. This constraint on the N-rep-
resentability of the exchange-correlation hole may be useful in density-functional
theory. In this context it is significant that Weitao Yang has recently proposed
that the self-interaction-error can be removed if the exchange-correlation hole is
constrained to be N-representable [43].

Finally, it may be mentioned that some of the results in this paper — nota-
bly the Lee–Jackson–Feenberg hierarchy and the exact necessary and sufficient
conditions for N-representability — had never before been presented in their
spin-resolved form. These new results are substantially similar to the previous
ones [9, 20] so detailed proofs have been omitted.
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